Take-away TV: Recharging Work Commutes with
Predictive Preloading of Catch-up TV Content

Dmytro Karamshuk!¥, Nishanth Sastry!9¢, Mustafa al-Bassam!f, Andrew Secker?, Jigna Chandaria?
!King’s College London, Strand, London, WC2R 2LS 2BBC R&D, 56 Wood Lane, London, W12 7SB
Hfirstname.lastname}@kcl.ac.uk 2{firstname.lastname}@rd.bbc.co.uk

Abstract—Mobile data offloading can greatly decrease the load on and usage of
current and future cellular data networks by exploiting opportunistic and frequent
access to Wi-Fi connectivity. Unfortunately, Wi-Fi access from mobile devices can
be difficult during typical work commutes, e.g., via trains or cars on highways. In
this paper, we propose a new approach: to preload the mobile device with content
that a user might be interested in, and thereby avoid the need for cellular data
access. We demonstrate the feasibility of this approach by developing a supervised
machine learning model that learns from user preferences for different types of
content, and propensity to be guided by the Ul of the player, and predictively
preload entire TV shows. Testing on a dataset of nearly 3.9 million sessions from
all over the UK to BBC TV shows, we find that predictive preloading can save over
71% of the mobile data for an average user.

Keywords—video streaming, predictive preloading, content delivery, mobile
prefetching, supervised learning, catch-up TV

1 INTRODUCTION

Internet video services are increasingly going mobile.
Conveniences offered by high bandwidth mobile net-
works and the availability of dedicated mobile video
apps have raised the volume of per-user mobile video
traffic by an incredible 262% in recent years [7Z]. Cisco
predicts that mobile video will increase 14-fold between
2013 and 2018, accounting for 69 percent of total mobile
data traffic by the end of the forecast period [6]. Mobile
video and TV have reached an inflexion point: In October
2014, tablets overtook PCs in number of accesses to
BBC iPlayer, an over-the-top TV streaming service used
widely in the UK for accessing BBC TV shows [4].

This increase is accompanied by a behavioural shift
among mobile users who now not only watch more,
but are increasingly watching on the move, during their
daily commutes [Z, 17]. From the operators’ perspective,
as more and more users start watching videos during
commutes, it is expected that there will be more capacity
problems, a challenge that has not gone unnoticed by
regulators [26]. From the users’ perspective, the high
bandwidth requirements of video content limit usage
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because of data caps, which are very common in mobile
plans [19].

A common solution to these problems lies in augment-
ing mobile networks with Wi-Fi connectivity]'| Indeed,
Cisco estimated that the common policy of preferentially
using Wi-Fi where available, rather than cellular net-
works, allowed users to offload a remarkable 45 percent
of total mobile data traffic in 2013 [6]. For cases when Wi-
Fi may not be available at the time of request, researchers
have also proposed mobile data offloading techniques,
where users’ requests for content are either processed
with a delay [20, 3], or their mobility pattern is predicted
and content pre-fetched to a Wi-Fi Access Point (AP) that
the user may encounter in the near future [30, 29, 23] [28]].

However, these “traditional” techniques for mobile
offloading exploit opportunistic access to Wi-Fi connec-
tivity, and are inadequate to support continous stream-
ing of long-duration content such as TV shows during
commutes: Wi-Fi APs appear in bursts, and are highly
unlikely to be seen during typical commutes on high-
ways, etc [3]. Further, measurement studies have shown
that if the back up option of cellular connectivity is used,
throughput diminishes when accessing from fast moving
trains and cars [14]. Connectivity can also be patchy: in
a test conducted in June 2014 on ten of the most popular
commuting routes in to and out of London, 23.2% of 3G
data packets and 37.2% of 4G data packets did not make
it to their intended destinations [13]. The situation can
be worse in metro trains which may go underground.
A recent study of 48 metro systems from 28 countries
suggests that the lack of good Internet connectivity un-
derground is a common problem for many developed
cities across the globe [31].

To address these difficulties in finding opportunistic
Wi-Fi during commutes, we propose predictive preloading,
a new approach to mobile data offloading for current and
future generation 5G networks: In contrast to predicting
mobility patterns, we propose to predict the content that a

1. Throughout this paper, we use Wi-Fi to denote access through a fixed-line
broadband connection, potentially via a Wi-Fi access point. Similarly cellular
networks is used to refer to data access over 3G, 4G or 5G networks.



user is likely to watch during the commute and preload
that content on her mobile device in advance, when she
might have access to reliable Wi-Fi connectivity, with
sufficient spare bandwidth, e.g., at her home. The main
challenge with preloading is that long-duration videos
such as TV shows can take up a large amount of storage.
Given the limited storage available on mobile devices,
predictions for preloading need to be highly accurate
in order to be useful. The amount of spare bandwidth
available for preloading could also limit the amount of
savings.

Our contributions are twofold: First, we analyze a trace
of nearly 3.9M sessions from mobile devices accessing
BBC’s TV shows online during July 2014 to understand
users’ preferences in content types and propensity to be
guided by the Ul of the player. Second, we develop a
predictive offloading mechanism for 3G/4G and future
generation cellular networks which allows to save nearly
71% of mobile data for an average user.

From our data trace we find that users have their
favourite channels and genres, which all capture a large
proportion of their accesses, i.e., 75% users’ accesses are
made for content items from only 3 out of 11 categories
and for 4 out of 11 channels. More remarkably, we notice
a similar concentration of user preferences towards the
top 4 or 5 content genres and shows despite a sig-
nificantly higher degree of choice available (there are
172 genres and more than a thousand different shows
available on iPlayer). We also find that a vast majority of
users (around 75%) are influenced by the User Interface
of the video player, and tend to access items which
are featured by the BBC content editors on the iPlayer
homepage, or access items on “most popular” lists (25%
of accesses by average users and more than 80% of
accesses by the top 10% of users are for such content
items, which appear prominently on the user interface).

Based on these results, we develop a supervised learn-
ing model that predicts whether a user would watch a
content item, and preload the most-likely-to-be-watched
items at a scheduled time point on a daily basis, e.g.,
after midnight. We compare the results of the predictive
preloading with a naive baseline model which greedily
preloads remaining parts of the last unfinished item
when accessing over Wi-Fi/broadband or at a scheduled
time. Our results suggest that predictive preloading al-
lows to offload up to 71% of mobile data usage for an
average user (over 95% for top 10% of users) and signif-
icantly outperforms naive greedy techniques (which can
only save = 22% of per-user mobile data on average).

2 BACKGROUND
2.1 Related Work

The idea of augmenting cellular networks with oppor-
tunistic accesses to WiFi networks has attracted a lot
of attention in the recent literature. Lee et al. [20] have
shown that about 65% of outdoor urban mobile traffic can
be saved by offloading cellular traffic to WiFi networks

without using any delayed transmission and extra 29%
can be achieved by allowing long delays (over 1 hour)
in delay-tolerant settings, whereas as little as 2-3% of
savings can be achieved for short deadlines (i.e., less
than 100 secs). Balasubramanian et al. [3] proposed an
approach to the more difficult problem of offloading dur-
ing commutes (rather than urban settings) by elaborating
a simple method to predict future WiFi throughput and
allowing delayed transmissions only if cellular savings
are expected within an acceptable time window. Whereas
this works well for delay tolerant applications, delay
sensitive applications are still affected by the bursty and
infrequent availability of Wi-Fi APs on highways and
other commuter routes [3]]. Although prefetching content
to APs that are expected to be encountered in the near
future can help to some extent, bursty availability of APs
can still cause buffering and stalls for continuous stream-
ing applications, and this is known to be deleterious for
user engagement [8]. Other works in this direction have
focused on exploring predictability of human mobility using
a cross-layer implementation [30, 29} 23| 28]. In contrast
to predicting mobility we focus on predicting to-be-watched
content to assist pre-fetching decisions.

Other attempts at data offloading have started to use
social context to prefetch content that a user might be
predisposed to access for social reasons [11} 33} [15]. None
of these attempt to completely offload content directly to
the user’s device, and it is unclear whether social infor-
mation by itself can provide accurate-enough predictions
when space is limited to less than 5-10 items. However,
social and other context information, where available,
can enhance preloading predictions made solely by using
user preferences, as in our approach.

In contrast to using specific context, globally popular
content can be prefetched for all users. Hoque et al. [12]
focus on the most popular content and exploit crowd-
sourced popularity statistics of other users to decide
which chunks (of an item currently being watched) a user
is more likely to watch next and speculatively pre-fetch
more of the popular chunks from a WiFi network. The
potential of utilising broadcast channels to pro-actively
push bundles of the most popular content has been
explored before [9], but only a mere 20% of mobile traffic
savings has been reported. This is consistent with the
savings we see for prefetching “Top” items (the baseline
used in Fig. [4] (left)). By drawing on a much larger scope
of signals specific for catch-up TV systems (i.e., user
preferences, featured content lists, periodically released
serial content, etc.) we obtain significantly larger savings,
i.e., up to 71% of per-user mobile traffic.

It worth noting that in the context of BBC iPlayer
itself, we have previously suggested a simpler prediction
algorithm, where only local information about individual
user preferences in TV programmes was exploited to pre-
dictively record broadcasted shows on set-top boxes [25].
While this simplified approach worked well for set-top
boxes with significantly larger storage capacities (many
current DVRs may have a 500 GB or 1 TB hard disk),



it proved to be inefficient for predictive preloading on
mobile devices which have storage capacities to store
only a dozen content items at maximum and, so, require
significantly higher prediction accuracies. Similarly we
have shown that peer-assisted approaches can deliver
significant savings for accesses over fixed-line broad-
band [16]. However, support for P2P has not yet become
prevalent in cellular networks, although device-to-device
sharing has been proposed recently [10]. Because the
approach in this paper caches directly on user devices, it
has the advantage of not requiring additional spectrum
for device to device (P2P) communications at the edge.

More broadly, predictive analytics in Internet TV sys-
tems have been primarily applied for channel zapping
in IPTV [22] [1} 18], off-loading internet traffic for set-top
box users [24] and programme recommendations [21}[34].
This paper elaborates on this line of work and extends
it to mobile content offloading.

2.2 Motivation

A recent marketing research of mobile users conducted
on a monthly trace of all mobile activities for 470 volun-
teers’| suggests that 30% of smartphone users and 40%
of table users watch videos on a daily basis with time of
accesses peaking in the morning and afternoon hours. In-
deed, in agreement with the above study, we previously
found [17] that the majority of mobile accesses to BBC
iPlayer happen during commute times, i.e., around 7-
10AM in the morning and around 5-7PM in the afternoon
(In contrast, accesses from broadband ISPs peak during
evenings [17].).

The current work is motivated by two factors: On the
one hand, the high bandwidth requirements of video
content limit usage because of data caps, which are
very common in mobile plans [19]. On the other hand,
watching catch-up TV during work commutes in the
UK is still an extremely challenging affair: neither train
companies [13] nor London underground system [31]
provide adequate Internet access (whether WiFi or cellu-
lar) suitable for streaming high resolution video content.
Research studies in other environments have also found
that high speed Internet (Wi-Fi or cellular) is difficult in
typical commute trajectories [3} [14].

Although the general scarcity of Wi-Fi APs enroute
makes the use of “traditional” mobile data offloading
techniques difficult for delay-sensitive applications like
continuous streaming of a TV show, it has been observed
that most mobile devices have plenty of opportunities for
high bandwidth Wi-Fi access [20]. Further, even though
real-time streaming of TV content is delay sensitive, the
content could potentially be pre-staged on the mobile
deviceﬂ removing the dependence on time.

Thus the core proposal of the current paper is to take
advantage of high-bandwidth Wi-Fi connectivity when

2. 2014 Mobile Behavior Report, http://goo.gl/uatYhj

3. Content can be protected using Digital Rights Management. Many applica-
tions including BBC iPlayer do this effectively already.

available, to predict what a user is going to watch next
and download content much before access by the user.
The total savings with predictive preloading is limited
by the amount of bandwidth/storage available — perfect
savings could be achieved by preloading the entire con-
tent catalogue, but this is clearly unrealistic. Therefore,
to prioritise and make the best use of limited storage,
we develop a machine learning model that takes user
preferences, and current Ul/featured content as signals,
and predicts per-user likelihood of watching for each
content item. The most-likely-to-be-watched items are
then saved on the user’s device.

3 UNDERSTANDING WATCHING PREFER-
ENCES OF MOBILE CATCH-UP TV USERS

In this section we analyze watching preferences of catch-
up TV users using a dataset of access logs from nearly
3.9 million sessions from mobile devices to BBC iPlayer —
a widely used service for accessing BBC’s TV and Radio
shows over the Internet. Our goal is to find patterns in
user accesses which can drive predictive preloading.

3.1 Dataset description

BBC iPlayer is an “over-the-top” video streaming service
which provides free access to TV and radio content from
a number of local and national BBC channels in the
UK. Content items are typically published on iPlayer for
“catch-up” viewing soon after broadcast and is made
available for up to 30 days depending on licensing
terms and other policies. iPlayer additionally provides
live streaming access to content currently being broad-
cast, but on-demand access constitutes the vast majority
(~90%) of TV sessions.

In this paper we consider a month-long snapshot of
access logs for video content on BBC iPlayer in July, 2014.
Each record in the dataset contains information about a
user’s session in the following format:

<network type, user id, start time, duration, content id>

The anonymized user-id is based on long-term cookies
(with a four year expiration date), that uniquely iden-
tifies each device/user agent separately. Network type is
obtained by resolving users’ IP addresses to Autonomous
System IDs using the RIPEE] dataset and further manual
classification of network ids into two classes: mobile
(cellular connection) and Wi-Fi (Fixed-line Internet). A
single user might have more than one user-id if they use
more than one device, or even if they use more than one
browser to access iPlayer. Users might also get multiple
IDs if their cookies expire. However, in general, the two
IDs (user and network) allow us to identify the different
providers of each user.

Session duration shows the number of unique seconds
of a content item that a user has watched during a

4. http:/ /www.ripe.net/data-tools/db
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Fig. 1: Users’ preferences in content types. Distribution
of per-user accesses for the content items in a user’s Top-
N out of 11 categories (top-left), out of 11 channels (top-
right), out of 172 genres (bottom-left) and out of more
than thousand serial programmes (bottom-right).

session. It is worth noting that iPlayer’s video player
automatically records watching position when a user
interrupts a session and, if a user re-accesses the same
content later, starts streaming from the recorded position.
Therefore, we assume that users complete watching con-
secutive parts of content items during repeated accesses.
We focus on regular users of iPlayer, defined as users
with at least 10 sessions overall (i.e., over Wi-Fi or
mobile), and at least 5 mobile sessions. This results in
a subset of 3,863,031 sessions from 113,731 mobile users.

3.2 Users Preferences for Content Types

Equipped with a dataset of iPlayer accesses we firstly
analyse user preferences for different types of content.
All content items in iPlayer are annotated by BBC edi-
tors with one (or several) of 11 content categories (e.g.,
drama, comedy) and one (or several) of 172 content
genres (e.g., sitcoms, crime, soaps). We also consider on
which of 11 BBC channels content items were broadcast.
Finally, many content items are part of multi-episode
TV series, which are typically serialised into weekly
broadcasts. We consider which (if any) of the more than
thousand serial programmes in the content corpus an
episode belongs to.

Thus, content items can be classified along four dif-
ferent content type axes: categories, genres, channels and
shows. We calculate the share of per-user accesses that
fall in the users” Top-N classes according to each content
type axis, and measure user preferences or affinity to-
wards particular types of items. We note that for all users
in our dataset, 75% of their accesses are made for content
items from only 3 out of 11 categories and for 4 out of 11
channels (Fig. [1} top row), suggesting high user affinity
towards categories and channels. More remarkably, we
notice a similar concentration of user preferences, even
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Fig. 2: Users prefer recently released and featured

shows. Distribution of time interval between users’ ac-

cesses and the broadcast time (left) and per-user shares

of accesses for the content items featured on the front

page (right).

when we move from 11 categories to a more fine-grained
subdivision into 172 content-genres, and to extremely
specific TV serials or shows (Fig. (1, bottom row).
Further, we analyse the age of the content items
watched by users, by measuring the Cumulative Distri-
bution Function (CDF) of the time elapsed between the
time of an access and time when the requested content
item was broadcast (Figure [2| (left)). We note that the
majority of accesses are for items with ages less than 1.5
days, suggesting a preference for recent broadcasts.

3.3 Ul Guidance

Next, we consider the extent to which users may be
influenced by items featured at any given time on iPlayer.
The iPlayer’s user interface (UI) provides several means
of navigating across the content corpus: via the list of
featured and popular content items on the front page;
via the featured lists in each content category and each of
BBC channels; and via textual search over content titles.
To study the effect of the UI on users’ choice of content,
we periodically crawled the 25 main BBC iPlayer UI
elements (including the front page, channel and category
pages). Complete snapshots were collected every half
hour from 1-31 July 2014?] It is worth noting that iPlayer
Ul is not personalised (i.e., the front and other pages
remain same across different users, browsers and device
types; it also flows similarly whether the browser or a
specialised mobile app is used for access). Therefore, it
was sufficient to crawl the UI from a single machine,
with default HTTP parameters. Although the pages are
adjusted based on screen size, the relative positions of
different content items on each page does not change
across device types.

The front page of the BBC iPlayer user interface typ-
ically displays a list of 16-20 episodes featured by BBC
editors and mixed with several groups of serial content
items and a group of top-5 most popular shows. We use
the timestamped snapshots of Ul pages collected by re-
peatedly crawling BBC iPlayer and assess the probability
of users accessing featured content.

5. Network failures resulted in a small loss of < 1% of collected data.
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In Fig. [2| (right) we plot the ratio of per-user accesses
for content items which were featured on the front page
at time of accesses. We note that on average, users have
25% of their accesses for content featured on the front
page. However, the share may significantly vary across
different users: for around 25% of users, none of their
accesses are for featured content, whereas for ~ 10% of
users, the vast majority (i.e., more than 80%) of their
accesses are for featured content.

However, one obstacle to using such correlations be-
tween user accesses and whether or not the accessed item
was featured on the Ul for predictions is that the set of
items featured changes regularly. Thus, predictions made
based on the set of items featured at the time of prediction
may not be accurate at the time of access — predictions
need to be reasonably close to the time of access. To
understand how far ahead the set of featured items can
serve as predictive signals, we analyze how frequently
featured pages are updated using our repeated crawls of
featured items, performed every 30 minutes. We measure
the proportion pr = Ft%otmﬂ of items listed on a featured
page F at time t which continue to remain on F at
time ¢ + 30 minutes. For the content items Fi 30 N Fy
which remain on a featured page from time ¢ to ¢ 4 30,
we also measure and report Spearman’s correlation of
their relative position on that featured page. Fig. 3 (left)
shows that featured pages remain relatively stable, with
periodic changes just after midnight. To quantify this, we
measure cumulative changes to the set of items featured
of the front page from a fixed time ¢ = 3AM up to time
t + n in Figure 3| (right). We note that the vast majority
of the content items remain on the featured pages for
almost 24 hours, featuring a slight change in the morning
hours around 10 — 11AM, and a major change after
midnight next day. This observation will justify our
design decision of performing predictive preloading at
3AM in the morning (§4).

4 PREDICTING TO-BE-WATCHED CONTENT

In this section we develop a machine learning algorithm
which models user preferences observed in §3|and pre-
dicts what a user is going to watch next.

4.1 Predictive Features

First, based on the observations in we devise a set
of features to predict whether a user U will watch an
episode E. For each pair (U, E), we exploit the state of
user U’s profile at the time of prediction 7'; meta informa-
tion about item F; its position in the popularity ranking
and featured lists at time 7’; and the user U’s affinity
towards item E calculated from information collected
for U by time T. Table [I| summarises all 449 features
computed.

Our first class of features attempts to match the content
type of E to the importance of that content type for U: Be-
cause a content item may simultaneously be classified in
multiple top-level categories or content-genres, we use a
11-long (respectively 172-long) 0-1 vector to describe the
content category (genre). We use another 11-long (172-
long) vector, to describe user affinity to particular content
categories (genres). The affinities are calculated as a
share of the particular category (genre) among all items
watched by the user. Similarly, we compute user affinity
to particular TV series/shows and channels. However,
since each item belongs to one serial and is broadcast
on one channel, these affinities can be directly computed
as a fraction of the user’s previous history which can be
attributed to a show or channel. We also compute the
time since the show was broadcast as a scalar feature
capturing user preference for recent content.

Next, we calculate a number of features relating to
the Ul that can boost or hinder its probability of being
watched. To compute these features, we first rank items
according to popularity, and according to the position
at which a content item is featured on each of the 25
main pages of iPlayer Ul at the time of preloading. In
addition, to account for the exposure of the user to the
item as featured on the UI, we also compute the average
position of the item in each list from all previous accesses
in a user’s history. The user’s probability of watching
items from each featured page is used to personalise the
weight to be placed for each page.

Our final set of features computes the propensity of
the user to complete watching an unfinished program or
rewatch it. As we will discuss later, some users rewatch
episodes, making it important to cache even after it has
been completely been watched. Similarly, if a user has
completed a reasonable fraction of the show (e.g., at least
10-15 mins), it may be a good indication of intention to
complete watching it, whereas if only a very small part of
the show (e.g., first 2-3 mins) has been watched, it may
indicate that the user did not find the item interesting
and abandoned watching it. We capture such information
by computing whether the item has been previously
watched, what fraction of the show was watched and
whether the user has re-watched other shows.

4.2 Prediction Model

For each session (U, E,T'), where U denotes a user, F a
content item and T the time of access, we compute the



\ Feature | Dimensions [ Type | Description | Hypothesis [ Importance |
[ Users’ Preferences in Content Types (Total importance: 0.555) |
Content category 11 E Category to which a content item belongs. 0.038

Content genre 172 E Genres to which a content item belongs 0.063
Category affinity 11 U Share of content items a user has watched from each U v h £ 1 0.042
category. ser; prefer shows from a s}x:la
Genre affinity 172 U Share of content items a user has watched from each genre. nulm el(‘io categories, enres,‘ chan- 0.103
— @) - - nels and programmes ( F1g.
Show affinity 1 U E S<N7U, where n4(g)(U) is the number of episodes of 0.179
show s(E) that user U has watched and N (U) is the total
number of content items the user has watched.
Channel affinity 1 U E ’L‘J(\,Ifib()w where n.(g)(U) - number of episodes from 0.043
channel ¢(E) that user U has watched, N(U) - total
number of content items the user has watched
Content age 1 E Time elapsed since the show was broadcast. Users prefer recently released con- 0.087
tent items (Fig. [2](left)).
[ Ul Guidance (Total importance: 0.292) |
Featured content 25 E The position of the content item on each of the featured U 0.061
. . X sers watch content featured on the
pages at time of preloading (-1 if not featured). front page. channel. genre and DOD-
Featured position 25 U Average position of content items watched by a user, on ular IZ\ ges, ( ’ 8 pop 0.061
each of the featured pages. The average is calculated from pages. (&
all previous accesses in a user’s history
Content popularity rank 1 E Position of the content item in the global popularity ranking 0.071
at time of preloading.
Popularity position 1 U Average position of content items in the popularity ranking 0.008
at the time of access, calculated from all previous accesses
in a user’s history.
Featured probability 25 18] Empirical probability of a user watching something from Some users have a higher proba- 0.091
each featured page. bility of accessing featured content
than others. (Fig.[2]b)
[ Repeatedly Watched Content (Total importance: 0.154) |
Previously watched 1 U E Whether user U has already watched content item FE Users continue watching content 0.066
before. items across networks or watch the
Completion ratio 1 U, E Share of the episode length which the user has already same items again. ( 0.081
watched before.
Probability of re-watching 1 U, E | Probability of a user watching content items more than | Watching content items more than 0.007
once. once is a user-specific behaviour.
( Fig. E(middle)

TABLE 1: Predictive features and their importance for mobile content preloading. Type column indicates whether
a feature has been constructed from a user’s information (U), an episode’s information (E) or both (U, E). Note that
the importance of individual features is rounded to three decimal places here for readability. The unrounded sum of

importances equals one.

set of predictive features from §4.1} which describe the
history of the user and the state of the content item at
time 7°ve™™9ht the night before access happens at time
T ﬂ For training, we only consider mobile sessions of the
users which happened when users have already collected
significant history, i.e., at least 5 mobile sessions. We also
generate a set of negative samples for each session in the
training set by randomly sampling 4 other content items
available on iPlayer at 7" with probability proportional
to the items” popularity at 1" (i.e.,, more popular content
is more likely to be selected to achieve a balance in
popularity of negative and positive samples). We assume
that user U had a chance to watch those items but
decided not to and train a model to understand what
factors matter.

Our model uses a Random Forest classifier (with 500
tree-predictors), which is known for a good prediction
performance with high-dimensional datasets [2]. Ran-
dom Forest is an ensemble classifier which operates by
constructing a multitude of decision trees using a com-
bination of tree-bagging and random subspace projections

6. we experimented with different time points for 7°V¢"™%9"* and found that
predictions conducted at 3AM achieve the best prediction performance.

- two different techniques which reduce the variance
and the bias of individual tree-predictors, correspond-
ingly [5]. Following standard methodology, we use Gini
impurity values as the criterion for constructing decision
trees and train the model over a random sample of 2K
users, resulting in 85K training samples (17K positive
and 67K negative samples).

4.3 Validation methodology

Firstly, we measure the performance of the algorithm
in terms of its ability to classify between the preferred
and not preferred content for a given user (Table [2). We
note that the algorithm is able to achieve considerable
classification performance (precision of 0.91 with recall
of 0.80) with 10-fold cross validation over the dataset
of 2K randomly selected users described above. We also
note that the prediction performance does not improve
significantly if we further increase the size of the dataset.

In practice, we are interested in how the algorithm is
able to pick a few most likely to-be-watched episodes
for a user among the variety of shows available on
iPlayer and, so, we further measure the ranking accuracy
of the algorithm as follows. We process each user session



Performance Metric | Value

Precision 0.91
Recall 0.80
Accuracy 0.94
Fl-score 0.85
AUC 0.94

TABLE 2: Performance of the prediction algorithm as
measured by mean values of accuracy, precision, recall,
area under precision-recall curve (AUC) and Fl-score
with 10-fold cross-validation.

Erovernigne availablg’| on iPlayer at time Tovernight = yya
use the trained model to predict the likelihood of user
U watching the item, and rank them according to the
predicted likelihoods. In practice, we rank more than a
hundred of content items in each individual experiment.
For the cases when we have very short users’ histories
by the time of prediction (i.e., less than 3 mobile ses-
sions) we empirically find that users” histories are not
sufficient to properly capture users preferences yet and
we use popularity-based predictions instead. Overall, we
conduct the testing on a total of 16.2K mobile sessions,
from a set of 1K users chosen randomly such that the
training and testing sets do not overlap. As discussed
later in we assume that the mobile device has space
for 5-10 items. Thus, the prediction is accurate if it ranks
the items watched in the top 5-10. Therefore, we measure
the performance of the model by calculating the per-
user accuracy of successful prediction in the top-N of
the predicted list (also known as Accuracy@N).

4.4 Results

In Fig. {4 (left) we compare the performance of our
personalised model against a baseline (denoted TOP
acc@N) of predicting the globally most popular Top-N
items with the popularity also measured at T°v¢™'9"t,
This shows significant improvements in accuracy with
our machine learning model (denoted ML acc@N). We
also note a diminishing returns for Accuracy@N with
the corresponding growth of the prediction list length
N: the median per-user accuracy increases considerably
(by around 140%) between Top-1 (ML acc@1) and Top-
5 (ML acc@5) predictions, but, only by 12% from Top-
5 (ML acc@5) to Top-10 (ML acc@10) predictions. This
suggests that, if successfully predicted, content items
are consistently ranked high (i.e., in the Top-5) in the
prediction list.

Further, we compute the extent to which individual
signals contribute to the overall prediction accurair of

1

(E,U,T) individua%gllv and for a set of content items

the proposed model. In the last column of Table [I| we
report the importance of individual features calculated
as the expected fraction of the training samples they
contribute to. We note that user affinity towards shows

7. Note that the content catalogue on iPlayer changes constantly — new items
are made available shortly after being broadcast on TV, and old items are
regularly removed, e.g., after one week. Thus there may be content items which
even a perfect predictive model cannot preload, as they may not be available as
part of the content catalogue at the time of preloading.

and genres are the strongest predictors of users’ future
accesses — a result which is an agreement with the finding
in Figure [1] that users specialize in a handful of content
types.

More generally, User Preference features gained the
maximum importance (i.e., 0.555) among the three dif-
ferent groups of features, followed by Ul Guidance with
total importance of 0.292. Interestingly, individual users’
preferences for featured content, as measured by the
featured probability, have proved to be an important
feature (i.e., importance of 0.091), whereas a measure of
a user’s attraction towards popular content, i.e., popu-
larity position, is an order of magnitude less important
for predicting to-be-watched content (i.e., importance of
0.008). Intuitively, most users have a shared preference
for popular content (and hence the content item is popu-
lar), and therefore this feature is not as discriminatory as
preference for featured content, as different users prefer
different featured content. This finding is also in agree-
ment with the result in Fig. 2| (right) that featured content
has strong affinity among some of the users, and anti-
affinity among others. Finally, the Previously Watched
features jointly account for an overall importance of 0.154
and are less important than the User Preferences and Ul
Guidance features.

5 PREDICTIVE PRELOADING

Equipped with the prediction algorithm from the previ-
ous section we finally introduce predictive preloading — a
new mobile data offloading approach for catch-up TV.

5.1 Mobile Preloading

To start off, we define a naive baseline preloading strat-
egy based on making use of good broadband connec-
tivity when it is available to “greedily” complete the
downloading of partially watched items, and “greedily”
caching them on device-local storage, therefore offload-
ing from future sessions that may require cellular data
access. This baseline approach is supported by the find-
ing in our previous work [17, Fig. 8b] that in many cases,
it may take users multiple sessions across both fixed-line
and cellular ISPs to complete watching a TV sho

A crucial question for mobile preloading is deciding
when the content should be downloaded. From the
perspective of trace-based evaluation, it is not a priori
clear when Wi-Fi access is available. Hence we consider
two conservative assumptions: The most conservative
assumption is that Wi-Fi connectivity is available only
when some content is being streamed. Even this limited
connectivity is sufficient to greedily prefetch content in
advance of being watched, given that average broadband
speed in the UK is 18.7 Mbps [27], whereas typical video
bitrates, in e.g., BBC iPlayer, could be 1.5 Mbps or even
lower. Thus, it is not unreasonable to expect that content
can be downloaded at up to 10 times the playback speed.

8. This may happen for various reasons. Users may, for instance, stop watching
when their train reaches the destination, and continue at home.
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Fig. 4: Performance of the Preloading Algorithms. Left: Per-user accuracy@N of ML predictions (ML acc@N)
for different lengths N of prediction list benchmarked over popularity-based predictions (TOP acc@N). Middle:
Cumulative Distribution Function (CDF) of per-user mobile savings (f) with greedy preloading of currently (and
previously) watched content items. Simulations conducted for different settings of spare bandwidth factor k, with a
single content item in cache (top solid, dash, dot), with unlimited cache (dash-dot), and after adding a scheduled
preloading session at midnight (bottom solid). Right: Mobile savings achieved from predictive preloading with
different storage sizes of 5 items (ML@5) or 10 items (ML@10); and with a more frequently scheduled preloading
of twice-daily schedule and with a storage size of 5 items (2 times @5), all benchmarked against the best greedy
preloading method (baseline), which is also shown as ‘midnight” in the middle plot.

A less conservative, but still reasonable, assumption is
that Wi-Fi connectivity and spare bandwidth is available
at some scheduled time during the day. For instance,
network usage decreases drastically after midnight, and
a user may be expected to be at home, where her device
can obtain Wi-Fi connectivity with ample spare band-
width. Note that although the evaluation below assumes
a specific time point for clarity, we only require that spare
Wi-Fi bandwidth is available at some time daily.

We expect that more than one content item can be
preloaded during one or multiple Wi-Fi sessions. How-
ever, in reality, the savings may be limited by the storage
available on the phone. As a back-of-envelope calcula-
tion, a 60 minute TV show encoded at 1.5 Mbps could
take up ~ 675 MB of storage. An older 8GB iPhone
may have ~ 4.9GB available for all user dataﬂ Thus, it
is reasonable to assume storage for preloading about 5
shows. More recent phones or tablets could have 16GB
storage for example, thus storing ~ 10 shows is still
reasonable.

Predictive preloading expands beyond partially
watched content items and allows to load unwatched
content that a model predicts are likely to be accessed.
In the following, we explore to what extent predictive
preloading based on the machine learning algorithm
from &4 can outperform simple greedy techniques.

5.2 Simulation Settings

We develop an event-based simulator where for a given
Wi-Fi session Sw;—p; = (U, E, D) of a user U watching

9. http://goo.gl/5dxDKi

content E for D seconds, we can preload and cache on
the user’s device content corresponding to kD seconds,
where k = 3 is a spare bandwidth factor, defined as the
proportion between a user’s download bandwidth « and
content bitrate 8. The higher & is, the more the spare
bandwidth available.

Thus, at the end of Session Sy ;_Fr;, the user’s device
has preloaded content equal to D,,. = min(P(U, E) +
kD, L(FE)) seconds of playback, where L(E) denotes the
length of the episode, and P(U, E) denotes the part of
the content item preloaded during previous accesses of
U for content E. The min(-) here captures the fact that
it is impossible to preload more than the length of the
episode L(E) even if the spare bandwidth factor and
the duration of a session D are large. It is also worth
noting that k = 1 corresponds to the case when only as
much content is cached on a user’s device as the user
has actually watched.

Caching: To derive any benefit from preloading, the
preloaded content needs to be cached. We considered
two variants. The first, basic, assumption is that exactly
one item is cached. Thus, preloading a new content item
would replace the previously preloaded item. We follow
this up by considering an infinite cache that can save all
previously preloaded items. Intermediate cache sizes are
not reported, because we find (see Fig. E] (middle)) that
increasing storage does not yield much improvement.

Calculating savings: For each mobile session Sysopite =
(U,E, D) of user U to episode E which lasts for a dura-
tion of D = Dyopie(S) seconds, we check whether a user


http://goo.gl/5dxDKi

has already preloaded the part of the content item being
accessed, and if yes, measure how many seconds of the
user’s mobile traffic would have been saved by watching
D from the user’s cache rather than streaming over a
cellular connection. Note that if the part being watched
has not been preloaded fully beforehand, we assume
that only the preloaded part (say, D,,. seconds) would
be watched from the user’s cache, whereas the rest of
the session (Dmobite — Dpre seconds) would be streamed
from a mobile network. We measure performance of the
proposed preloading mechanism in terms of the per-user
mobile savings which we formally define as followﬂ

= ZSESMobile(U) Dm)e(s)
ZSGSMobue(U) DmObile(S)

o(U) @

5.3 Naive Baseline: Greedy Preloading

Active preloading is not required for savings: We start
off with a scenario when no preloading happens, i.e.,
only the content that has been already played back to
the user is cached (i.e., k = 1). We also set the cache size
to one item, i.e., only the last item played back is cached.
Surprisingly, even this passive caching of the last item
streamed, without downloading in advance, can achieve
non-trivial savings (Fig. E] (middle)) of ~11% on average,
albeit for a fraction of the user population (=~ 63%). The
savings arise because those users also watch the same
content more than once. However, as many users do
not rewatch shows, the average savings for the whole
population is only ~ 7%.

Increased bandwidth and storage help, but benefits are
limited: Next, we consider scenarios where k > 1, to
study the benefits of increased bandwidth. Fig. 4| (mid-
dle) shows that there is additional savings to be had
when k increases to 10, but almost no additional savings
beyond this can be achieved, even when %k becomes
infinite and content can be preloaded instantaneously, as
soon as a Wi-Fi session starts. To understand why this
is the case, notice that with a spare bandwidth factor of
k = 10 (which we recall is reasonable assumption given
the average download bandwidth of 18.7Mbps in the
UK and a typical iPlayer streaming bitrate of 1.5Mbps),
a typical 60 minute-long TV show can be preloaded in
just 6 minutes. Thus, no additional benefit is to be had
by increasing k when the Wi-Fi session lasts longer than
6 minutes. We then study the importance of cache size
by simulating an unlimited cache, in addition to & = oco.
This increases the mobile savings for 70% of the users
and saves =~ 13% on average, suggesting that some users

10. Note that we measure savings in terms of mobile minutes rather than
directly in terms of bytes saved because bitrate information was not available
for many mobile sessions in our dataset. However, given that bitrate variation in
iPlayer sessions is typically quite small [16], we envisage that savings in terms
of minutes translate approximately to bytes.

are likely to switch back and continue watching (or re-
watching) a content item even after they have already
started watching something new. On the other hand,
we note that even with all these proposed unrealistic
adjustments, the median per-user savings of this just-
in-advance preloading only reaches ~ 9% when averaged
over the whole population.

Scheduled preloading helps by catching mobile-only
split sessions: With an infinitely fast preloader (k = oc)
and infinite storage, all sessions over cellular network
that are preceded by a Wi-Fi session to the same content
item should be offloaded. Thus, any remaining split
sessions are due to mobile-only access. For instance, a
user may begin watching the first part of a TV show over
cellular network during her morning commute and finish
also over cellular network during her evening commute,
or on the next day’s commute. To catch such sessions,
we need a separate special session that accesses iPlayer
solely to preload content rather than piggybacking the
preloading on top of an existing Wi-Fi session. To study
the effect of such a dedicated preloading session, we ex-
plore a scheduled preloading approach and model a batch
job on each user’s device which wakes up each midnight
and preloads all partially watched content items from
the users’ previous sessions. Fig. ] (middle) shows that
with this strategy, up to 83% of users can save and each
obtains an average savings of ~ 22%.

5.4 Predictive Preloading

Next, we ask how the machine learning model intro-
duced in §4 can improve mobile savings.

Predictive approach improves over greedy scheduled
preloading: Fig. [ (right) shows that predictive preload-
ing achieves significantly higher savings in comparison
to the greedy scheduled overnight preloading: greedy
scheduled preloading (shown as baseline in Fig. {4{(right))
assumes infinite cache size and still performs worse
than ML@5 and ML@10 with cache sizes of 5 and 10
items. This suggests that machine learning based selec-
tion of to-be-watched content items can capture a signif-
icantly wider range of indicators for future preferences
of the users than just the history of previously watched
episodes, as used in the greedy method. This result is in
agreement with the fact that information about whether
(and for how long) a content item has been watched
contributes only 0.154 (out of 1) to overall importance
of prediction features in Table

Increased storage offers diminishing returns:
Fig. [ (right) shows that doubling storage from 5
to 10 items yields only a slight (18%) increase in mobile
savings. This is in agreement with the accuracy results
discussed in §4| which suggests a high concentration of
successful predictions in the Top-5 of the prediction list
(Figure Fig. [ (left)). Thus, storing a larger list of items
does not translate directly to mobile savings.



Increased frequency of preloading helps a bit: Finally,
we analyse potential gains from increasing the frequency
of preloading opportunities throughout a day. We moti-
vate this step with the illustrative example of a commuter
who may access iPlayer during the morning commute
once and again during the evening commute. Recom-
puting predicted items after the morning commute can
help because the model can learn from the new addition
to the user’s history, and also because a more updated
list of featured items, as well as an updated list of most
popular items can be used. Examining our dataset, we
find that a majority (> 60%) of the users, if they access
iPlayer from a mobile device during a day, do so two or
more times during that day. Indeed, we observe a 18%
improvement in mobile savings by incorporating this
additional opportunity for predictive preloading during
the day (dash dot line in Figure E] (right)). However,
this approach yields diminishing returns and we do
not observe significant improvements from further in-
creasing the number of preloading opportunities during
the day. Interestingly, we notice that increasing storage
size and adding preloading opportunities yield similar
gains in mobile savings, a fact that can be exploited
to trade-off between the two strategies depending on
whether storage capacity or Wi-Fi access availability is
a constraint.

6 DISCUSSION AND CONCLUSIONS

In this paper we proposed a novel approach for data
offloading that operates by predicting which items users
are likely to watch while on the move, and preloads
such items from a reliable Wi-Fi connection beforehand.
We evaluated this technique using as case study a large
“catch-up” TV system used widely in the UK for stream-
ing BBC shows. However, similar techniques could po-
tentially be applied in other situations as well, with
the prediction models adapted to the use case at hand.
We believe that such predictive preloading techniques
could be a valuable addition to the array of offloading
techniques proposed for future cellular systems [32].
Below we conclude with a summary of the main results
in the context of our specific study, and discuss caveats
and limitations:

Using a trace of nearly 3.9 million sessions to iPlayer
from mobile devices we first looked for signals which
can predict future user access. We found that individual
users’ preferences in content items are typically concen-
trated around a handful of content genres, channels and
shows. We also found that in general users are influenced
by the UI guidance, such as content featured on different
iPlayer pages but the extent of this influence varies
significantly across different users: For around 25% of
users, none of their accesses are for featured content,
whereas for 10% of users the vast majority (i.e., more
than 80%) of their accesses correlate with the content
featured in the iPlayer UL
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We exploited these insights to develop a supervised
learning algorithm which can predict more than 66%
of per-user accesses in the Top-10 of the prediction list
for the majority of users and over 88% for the top
10% of users. Based on the machine learning model, we
proposed a predictive preloading mechanism to offload
mobile traffic of individual users during work commutes
and compared it with a number of naive approaches. Our
result suggests that predictive preloading significantly
outperforms all naive strategies and allows up to 71%
of mobile traffic savings for an average user and over
95% for the top 10% of users.

Although we evaluated using a large and real dataset,
full-scale deployments may need to consider additional
factors. For instance, our evaluation relied on a month-
long trace, whereas models used in a real deployment
may need to be tuned to perform well over larger time
periods. On the one hand, a larger time period can bene-
fit from a longer user history. On the other hand, user in-
terests may change over time, and the content catalogue
on BBC iPlayer itself changes regularly (new shows are
typically added in the first hours after broadcast and are
removed after 30 days). Therefore, the machine learning
model will need to adapt and use an appropriate amount
of recent user history to maintain good performance.
Similarly, our approach relies on capturing a wide range
of signals, some of which may be specific to catch-up
TV systems such as BBC iPlayer. Additional tuning may
be required if it needs to be applied to other platforms
such as Netflix which may have slightly different content
availability characteristics (e.g., larger content catalogue,
or a catalogue of items which does not change as often
as iPlayer).

Further, storage strategies in full-scale deployments
can incorporate simple improvements that can poten-
tially improve the performance beyond what we report
here. One approach would be to optimise the length of
the preloaded episode based on a typical duration of a
user’s commute: Instead of preloading the full length of
a long episode, the algorithm may preload small frac-
tions of multiple episodes for short commutes, thereby
increasing the chance that the content watched by the
user will be in the preloaded list. Another approach
relies on using the storage of the device more effectively
by taking the bitrate preferences of the user or device
capabilities into account: For example, a smartphone
with small screen resolution and, consequently, a lower
bitrate requirement, can accommodate a larger number
of episodes given the same storage constraints.

In summary, we envisage that with the right predictive
model, preloading can be a very fruitful strategy for
many kinds of applications. However, a number of use-
case specific adaptations will need to be made, as in
our case study. Full-scale deployments will need to bear
other considerations in mind, as discussed above.
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